Embedding Deterministic Patterns in Partial Pseudo-Exhaustive Test

نویسندگان

  • Anastasia Sannikova
  • Abdullah Mumtaz
چکیده

The topic of this thesis is related to testing of very large scale integration circuits. The thesis presents the idea of optimizing mixed-mode built-in self-test (BIST) scheme. Mixed-mode BIST consists of two phases. The first phase is pseudo-random testing or partial pseudo-exhaustive testing (P-PET). For the faults not detected by the first phase, deterministic test patterns are generated and applied in the second phase. Hence, the defect coverage of the first phase influences the number of patterns to be generated and stored. The advantages of P-PET in comparison with usual pseudo-random test are in obtaining higher fault coverage and reducing the number of deterministic patterns in the second phase of mixed-mode BIST. Test pattern generation for P-PET is achieved by selecting characteristic polynomials of multiple-polynomial linear feedback shift register (MP-LFSR). In this thesis, the mixed-mode BIST scheme with P-PET in the first phase is further improved in terms of the fault coverage of the first phase. This is achieved by optimization of polynomial selection of P-PET. In usual mixed-mode BIST, the set of undetected by the first phase faults is handled in the second phase by generating deterministic test patterns for them. The method in the thesis is based on consideration of these patterns during polynomial selection. In other words, we are embedding deterministic test patterns in P-PET. In order to solve the problem, the algorithm for the selection of characteristic polynomials covering the pre-generated patterns is developed. The advantages of the proposed approach in terms of the defect coverage and the number of faults left after the first phase are presented using contemporary industrial circuits. A comparison with usual pseudo-random testing is also performed. The results prove the benefits of P-PET with embedded test patterns in terms of the fault coverage, while maintaining comparable test length and time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altering a Pseudo-Random Bit Sequence for Scan-Based BIST

1. Modify Circuit-Under-Test; The circuit-under-test is modified by either inserting test points This paper presents a low-overhead scheme for built-in [Eichelberger 831, [Cheng 951, [Touba 961, or by self-test of circuits with scan. Complete (100%) fault redesigning it [Touba 941, [Chiang 941, [Chatterjee 951 to coverage is obtained without modifying the function logic improve the fault detect...

متن کامل

Accumulator based deterministic BIST

Most built-in self test (BIST) solutions require specialized test pattern generation hardware which may introduce significant area overhead and performance degradation. Recently, some authors proposed test pattern generation on chip by means of functional units also used in system mode like adders or multipliers. These schemes generate pseudo-random or pseudo-exhaustive patterns for serial or p...

متن کامل

An apparatus for pseudo-deterministic testing

Pseudo-random testing is popularly used, particularly in Built-In Self Test (BIST) applications. To achieve a desired fault coverage, pseudo-random patterns are often supplemented with few deterministic patterns. When positions of deterministic patterns in the pseudo-random sequence are known a priori, pseudo-random sub-sequences can be chosen such that they cover these deterministic patterns. ...

متن کامل

Non-intrusive BIST for systems-on-a-chip

The term “functional BIST” describes a test method to control functional modules so that they generate a deterministic test set, which targets structural faults within other parts of the system. It is a promising solution for self-testing complex digital systems at reduced costs in terms of area overhead and performance degradation. While previous work mainly investigated the use of functional ...

متن کامل

Performance of Generic and Recursive Pseudo Exhaustive Two-Pattern Generator

The main objective of this research is to design a Built-in self-test (BIST) technique based on pseudo-exhaustive testing. Two pattern test generator is used to provide high fault coverage. To provides fault coverage of detectable combinational faults with minimum number of test patterns than the conventional exhaustive test pattern generation, increases the speed of BIST and may posses minimum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013